215 research outputs found

    COMET strongly supported the development and implementation of medium-term topical research roadmaps consistent with the ALLIANCE Strategic Research Agenda

    Get PDF
    The ALLIANCE Strategic Research Agenda (SRA) initiated by the STAR Network of Excellence and integrated in the research strategy implemented by the COMET consortium, defines a long-term vision of the needs for, and implementation of, research in radioecology. This reference document, reflecting views from many stakeholders groups and researchers, serves as an input to those responsible for defining EU research call topics through the ALLIANCE SRA statement delivered each year to the EJP-CONCERT (2015–2020). This statement highlights a focused number of priorities for funding. Research in radioecology and related sciences is justified by various drivers, such as policy changes, scientific advances and knowledge gaps, radiological risk perception by the public, and a growing awareness of interconnections between human and ecosystem health. The SRA is being complemented by topical roadmaps that have been initiated by the COMET EC-funded project, with the help and endorsement of the ALLIANCE. The strategy underlying roadmap development is driven by the need for improved mechanistic understanding across radioecology. By meeting this need, we can provide fit-for-purpose human and environmental impact/risk assessments in support of the protection of man and the environment in interaction with society and for the three exposure situations defined by the ICRP (i.e., planned, existing and emergency). Within the framework of the EJP-CONCERT the development of a joint roadmap is under discussion among all the European research platforms and will highlight the major research needs for the whole radiation protection field and how these are likely to be addressed by 2030

    Sustainability and integration of radioecology — position paper

    Get PDF
    This position paper gives an overview of how the COMET project (COordination and iMplementation of a pan-European instrumenT for radioecology, a combined Collaborative Project and Coordination and Support Action under the EC/Euratom 7th Framework Programme) contributed to the integration and sustainability of radioecology in Europe via its support to and interaction with the European Radioecology ALLIANCE. COMET built upon the foundations laid by the FP7 project STAR (Strategic Network for Integrating Radioecology) Network of Excellence in radioecology. In close association with the ALLIANCE, and based on the Strategic Research Agenda (SRA), COMET developed innovative mechanisms for joint programming and implementation of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET were targeted at radioecological research needs identified in the SRA. Furthermore, COMET maintained and developed strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. In the short term the work to promote radioecology will continue under the H2020 project EJP-CONCERT (European Joint Programme for the Integration of Radiation Protection Research). The EJP-CONCERT project (2015–2020) aims to develop a sustainable structure for promoting and administering joint programming and open research calls in the field of radiation protection research for Europe. In the longer term, radioecological research will be facilitated by the ALLIANCE. External funding is, however, required in order to be able to answer emerging research needs

    Cancer incidence in the vicinity of Finnish nuclear power plants: an emphasis on childhood leukemia

    Get PDF
    The objective of this paper was to study cancer incidence, especially leukemia in children (<15 years), in the vicinity of Finnish nuclear power plants (NPPs). We used three different approaches: ecological analysis at municipality level, residential cohorts defined from census data, and case–control analysis with individual residential histories. The standardized incidence ratio of childhood leukemia for the seven municipalities in the vicinity of NPPs was 1.0 (95% CI 0.6, 1.6) compared to the rest of Finland. The two cohorts defined by censuses of 1980 and 1990 gave rate ratios of 1.0 (95% CI 0.3, 2.6) and 0.9 (95% CI 0.2, 2.7), respectively, for childhood leukemia in the population residing within 15 km from the NPPs compared to the 15–50 km zone. The case–control analysis with 16 cases of childhood leukemia and 64 matched population-based controls gave an odds ratio for average distance between residence and NPP in the closest 5–9.9 km zone of 0.7 (95% CI 0.1, 10.4) compared to ≄30 km zone. Our results do not indicate an increase in childhood leukemia and other cancers in the vicinity of Finnish NPPs though the small sample size limits the strength of conclusions. The conclusion was the same for adults

    Identification of yrast states in 187Pb

    Get PDF
    g -ray spectroscopy of the high-spin states of the neutron-deficient nucleus 187Pb has been conducted with the 155Gd(36Ar,4n) reaction. A cascade of three transitions was deduced from g -g coincidence data gated by detection of recoiling evaporation residues in a gas-filled recoil separator. In an earlier, separate experiment, two of these g rays were positively identified with 187Pb by recoil-g coincidence measurements with a high-resolution, recoil mass spectrometer. From comparison with similar sequences in heavier odd-A lead isotopes, the cascade in 187Pb is associated with the sequence of three E2 transitions from the yrast 25/2 + level to a low-lying 13/2 + isomer. The variation of excitation energy with mass number of the levels concerned suggests that their structure can be associated with weak coupling of an odd i13/2 neutron to states in the spherical well. However, the possibility that they are influenced by mixing with states in the prolate-deformed well cannot be discounted
    • 

    corecore